The generator matrix

 1  0  1  1  1  1 2X^2+X  1  1 2X  1  1  1  0  1  1  1 2X  1  1  1  1 2X^2+X  1  1  X 2X^2  1  1  1  1  1  1  1  1 2X^2  1  1  1  1  1  1 2X  1  1 2X  1  1  1 X^2  1  X  X  1  X 2X^2  1  0  1
 0  1  1  2 2X^2+X 2X^2+X+2  1 2X^2+2X+1 2X  1 2X+2 X+1  0  1 2X^2+2 2X^2+2X+1  X  1 X+2 2X^2+X  1  2  1 2X^2+1 2X^2+X+2  1  1 2X^2 2X^2+2X 2X^2+X+1 2X+2 X+1 X^2+1 2X^2+1 2X^2+X  1  0  2 X+1 X^2+2 X^2+X 2X^2+X+1  1 2X+1 2X^2+X+2  1  1  X X+2  1 2X^2+1 2X^2+X 2X^2+X 2X^2 X^2 2X^2 X^2  X 2X^2
 0  0 2X  0  0 2X^2 2X^2 2X^2 X^2  0  0 2X^2 X^2+2X 2X^2+2X 2X^2+X X^2+2X 2X^2+X X^2+2X  X 2X X^2+X X^2+2X X^2+2X X^2 X^2+2X 2X^2+X X^2+X  X 2X^2+X  X 2X X^2+2X  X X^2 2X^2+2X  X 2X X^2 2X X^2+2X 2X^2+X 2X^2+X 2X^2  X  0 2X^2 2X^2 X^2 2X^2+2X X^2+2X  0 X^2+2X 2X^2+X 2X 2X  X 2X 2X^2+2X 2X^2+X
 0  0  0 X^2  0  0  0 2X^2  0  0 2X^2 X^2  0  0 2X^2 X^2 2X^2 2X^2 X^2 X^2 X^2 2X^2 2X^2 X^2  0  0 2X^2  0 X^2  0 2X^2 X^2 2X^2 2X^2 2X^2 2X^2 2X^2 X^2  0 2X^2  0 2X^2 X^2 X^2 X^2 X^2 2X^2 2X^2 X^2  0  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2
 0  0  0  0 2X^2 2X^2 X^2 X^2 X^2 2X^2 X^2  0 2X^2  0 X^2 X^2  0 X^2 X^2 2X^2 X^2 2X^2 2X^2 X^2  0  0  0  0 2X^2 X^2  0  0  0 2X^2  0 2X^2 2X^2 2X^2 2X^2 X^2 X^2 2X^2 2X^2  0 X^2 X^2  0 X^2 2X^2 2X^2 X^2  0 X^2  0 2X^2  0 2X^2 X^2  0

generates a code of length 59 over Z3[X]/(X^3) who�s minimum homogenous weight is 108.

Homogenous weight enumerator: w(x)=1x^0+468x^108+378x^109+540x^110+2094x^111+1440x^112+2178x^113+4374x^114+3816x^115+4698x^116+6068x^117+5706x^118+5814x^119+6132x^120+4554x^121+3708x^122+3572x^123+1530x^124+540x^125+870x^126+72x^127+18x^128+318x^129+116x^132+32x^135+6x^138+2x^141+4x^144

The gray image is a linear code over GF(3) with n=531, k=10 and d=324.
This code was found by Heurico 1.16 in 8.55 seconds.